HAS-QA: Hierarchical Answer Spans Model for Open-domain Question Answering Liang Pang[†], Yanyan Lan^{†*}, Jiafeng Guo[†], Jun Xu[†], Lixin Su[†], Xueqi Cheng[†] † CAS Key Lab of Network Data Science and Technology Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China

† University of Chinese Academy of Sciences, Beijing, China

* Department of Statistics, University of California, Berkeley

Background

Search Engine

What is Machine Learning

What is Machine Learning? - An Informed Definition - TechEmergence https://www.techemergence.com/what-is-machine-learning/ ▼翻译此页 2018年10月29日 - We asked 6 machine learning experts (including machine learning "godfather" Dr. Yoshua Bengio) to define "Machine Learning" as simply as ...

Machine learning - Wikipedia https://en.wikipedia.org/wiki/Machine learning ▼翻译此页

Google

Machine learning (ML) is a field of artificial intelligence that uses statistical techniques to give computer systems the ability to "learn from data, without being ... Active learning (machine ... · Boosting (machine learning) · Online machine learning

What is Machine Learning? A definition - Expert System https://www.expertsystem.com/machine-learning-definition/ ▼翻译此页

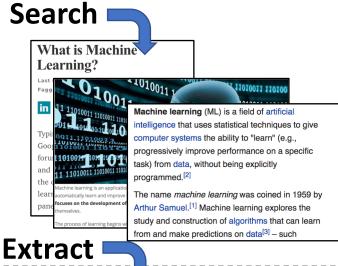
Machine learning is an application of artificial intelligence (AI) that provides systems the ability to automatically learn and improve from experience without being ...

What is machine learning (ML)? - Definition from WhatIs.com https://searchenterpriseai.techtarget.com/definition/machine-learning-ML ▼翻译此页

Machine learning (ML) is a category of algorithm that allows software applications to become more accurate in predicting outcomes without being explicitly ...

What is Machine Learning? - Introduction | Coursera

https://www.coursera.org/.../machine-learning/what-is-machine-learning-Uj... ▼翻译此页 Video created by Stanford University for the course "Machine Learning". Welcome to Machine Learning! In this module, we introduce the core idea of teaching a ...



Machine learning (ML) is a fice fartificial intelligence that uses statistical techniques to give computer systems the ability to "learn" (e.g., progressively improve performance on a specific task from data, without being explicitly programmed.^[2]

The name machine learning was coined in 1959 by Arthur Samuel.^[1] Machine learning explores the study and construction of algorithms that learn from and make predictions on data^[3] – such algorithms overcome following strictly static ram instructions by making data-driven predictions

Machine learning (ML) is a field of artificial intelligence that uses statistical techniques to give computer systems the ability to "learn" from data, without being explicitly programmed.

Knowledge Base

Supervised learning

Clustering

Theory

Related articles

(classification • regression)

Dimensionality reduction

Artificial neural networks

Reinforcement learning

Machine-learning venues

Glossary of artificial intelligence

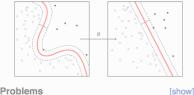
Structured prediction

Anomaly detection

Machine learning

From Wikipedia, the free encyclopedia WikipediA

Machine learning and data mining



Machine learning intelligence that use computer systems t progressively impro task) from data, with programmed.^[2]

The name machine Arthur Samuel.^[1] M study and construct from and make pred algorithms overcom instructions by mak decisions.^{[4]:2} throu inputs. Machine lea computing tasks wh explicit algorithms v or infeasible; exami filtering, detection o vision. Machine learning is overlaps with) comp

[show] focuses on predictic [show] computers. It has st Machine learning portal optimization, which

[show]

[show]

[show]

[show]

[show]

[show]

[show]

[show]

[show]

Low Information Entropy & Question Diversity

I Outline

Open-domain Question Answering Challenges

- \circ Formulation
- o HAS-QA
 - Question Aware Context Encoder
 - Conditional Span Predictor
 - Multiple Spans Aggregator
 - Paragraph Quality Estimator
- o Experiments
- o Conclusion & Going Forward

Open-domain Question Answering

o Input:

- *Q*: real world question.
- D: huge unstructured text dataset, such as web page corpus or Wikipedia.

• Output:

• *A*: answer text from text dataset, which can answer the input question

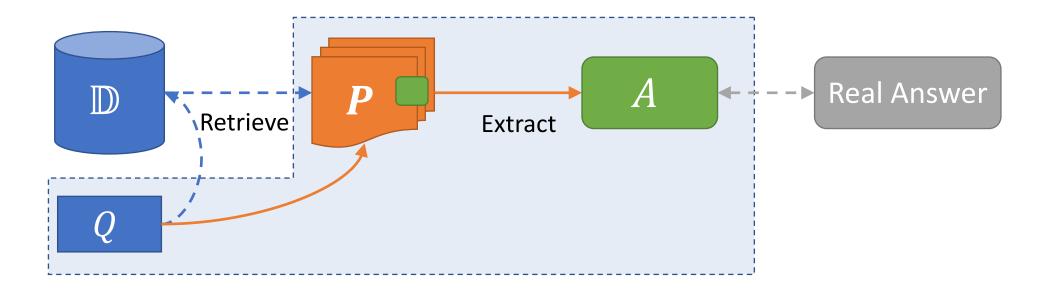
I Task – Two Assumptions

o Assumption 1:

Question relevant paragraphs P, can be retrieved from unstructured text dataset \mathbb{D} , considering the question Q.

o Assumption 2:

Answer A is a text span in the paragraphs **P**.



I Challenges

• Example:

Search

Question: What does a camel store in its hump?

Paragraph1(*multiple-answer-spans*): The humps are reservoirs of fatty tissue: concentrating body **fat** in their humps minimizes the insulating effect **fat** would have if distributed over the rest of their bodies, helping camels survive in hot climates.

Paragraph2(no-answer-span): Camels with one hump are called Arabian camels, or Dromedaries, and come from North Africa. Camels with two humps are from Asia, and are called Bactrian camels.

Answer: fat

• Challenges:

- 1) Many paragraphs without the answer span are included in the data collection;
- 2) Multiple answer spans may exist within one given paragraph;
- 3) The end position of an answer span is dependent with the start position.

I Outline

Open-domain Question Answering Challenges Formulation

o HAS-QA

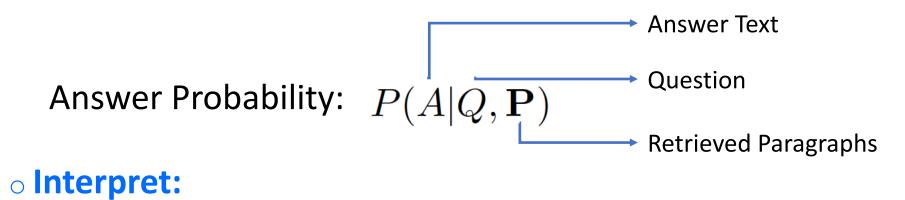
- Question Aware Context Encoder
- Conditional Span Predictor
- Multiple Spans Aggregator
- Paragraph Quality Estimator

 \circ Experiments

o Conclusion & Going Forward

I Probabilistic Views – Target

• Target:



The probability of the text A is the answer text, given the question
 Q and retrieved paragraphs P.

I Probabilistic Views – Challenge 1

• Challenge 1:

0

Many paragraphs without the answer span are included in the data collection.

Answer Probability:
$$P(A|Q, \mathbf{P}) = \sum_{i=1}^{K} P(P_i|Q, \mathbf{P})P(A|Q, P_i);$$

Conditional Answer Probability
nterpret: Paragraph Probability

- **Paragraph Probability**: The probability of the paragraph P_i that contains answer text, given the question Q and retrieved paragraphs P.
- Conditional Answer Probability: The probability of the text A is the answer text, given the question Q and paragraph P_i .

I Probabilistic Views – Challenge 2

• Challenge 2:

Multiple answer spans may exist within one given paragraph.

o Interpret:

- Span Probability: The probability of the text span $L_j(A)$ is the answer span, given the question Q and paragraph P_i .
- There exist $|\mathcal{L}(A, P_i)|$ answer spans in paragraph P_i .

I Probabilistic Views – Challenge 3

• Challenge 3:

The end position of an answer span is dependent with the start position.

Span Probability: $P(L_j(A)|Q, P_i) = P(L_j^s(A)|Q, P_i) \longrightarrow$ Location Start Probability $\cdot P(L_j^e(A)|Q, P_i, L_j^s(A)).$ \circ Interpret: Location End Probability

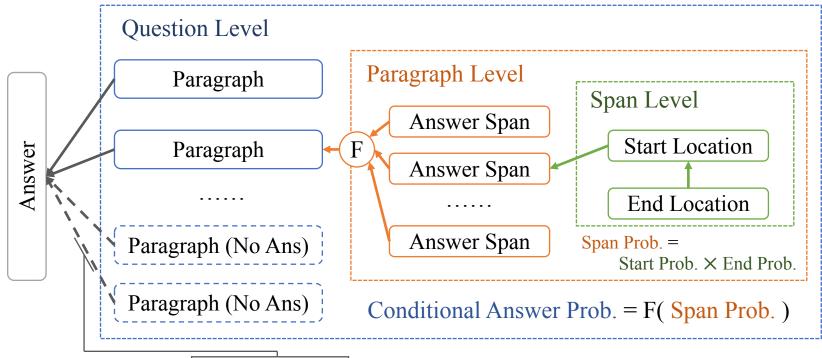
- Location Start Probability: The probability of the text span start location $L_j^s(A)$ is the answer span location, given the question Q and paragraph P_i .
- Location End Probability: The probability of the text span end location $L_j^e(A)$ is the answer span location, given the question Q, paragraph P_i and start location $L_j^s(A)$.

I Probabilistic Views – OpenQA Task

• Target:

Answer Probability: $P(A|Q, \mathbf{P})$

 \circ Model:



Answer Prob. = Σ Paragraph Prob. × Conditional Answer Prob.

I Probabilistic Views – RC Task

For a Reading Comprehension Task

• Object: $P(A|Q, P^+)$.

• Model:
$$P(A|Q, P^+) := P(L(A)|Q, P^+);$$

 $P(L(A)|Q, P^+) = P(L^s(A)|Q, P^+)$
 $\cdot P(L^e(A)|Q, P^+).$

$\mathbf{RC} \subseteq \mathbf{OpenQA}$

- 1. One paragraph
- 2. One answer span
- 3. Independence start and end location

From above analysis, we propose a model named HAS-QA.

Question Aware Context Encoder Conditional Span Predictor Multiple Span Aggregator Paragraph Quality Estimator

I Outline

Open-domain Question Answering Challenges
 Formulation

 \circ HAS-QA

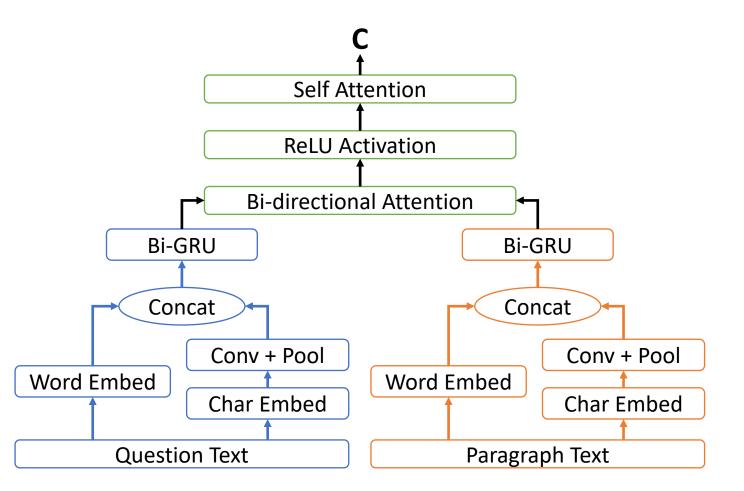
- Question Aware Context Encoder
- Conditional Span Predictor
- Multiple Spans Aggregator
- Paragraph Quality Estimator

o Experiments

o Conclusion & Going Forward

I HAS-QA – Question Aware Context Encoder

- Word Embeddings: use size 300 pretrained GloVe (Pennington et al., 2014) word embeddings.
- Char Embeddings: encode characters in size 20, which are learnable. Then processed by convolutional layer and max pooling layer to obtain the embedding of each word.
- Context Embeddings: concatenate word embeddings and char embeddings, and apply bidirectional GRU (Cho et al., 2014) to obtain the context embeddings. Both question and paragraph get their own context embeddings.
- Question Aware Context Embeddings: use bi-directional attention mechanism from the BiDAF (Seo et al., 2016) to build a question aware context embeddings.

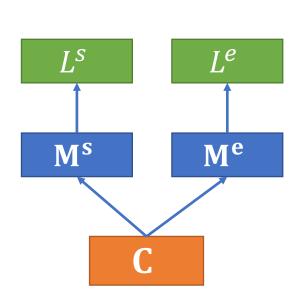


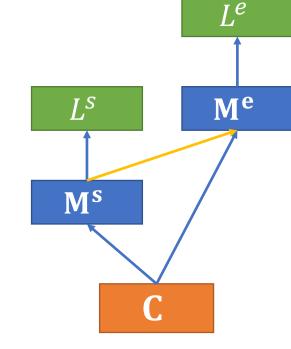
I HAS-QA – Conditional Span Predictor

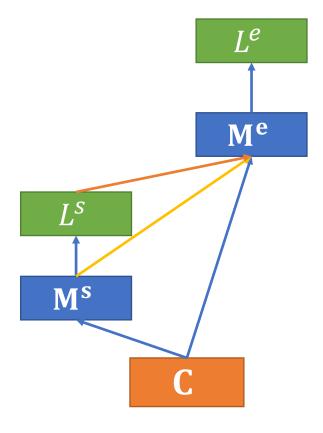
Two independently position classifiers (IndCls)

Pointer Networks (PtrNet)

Conditional Pointer Networks (CondPtrNet)

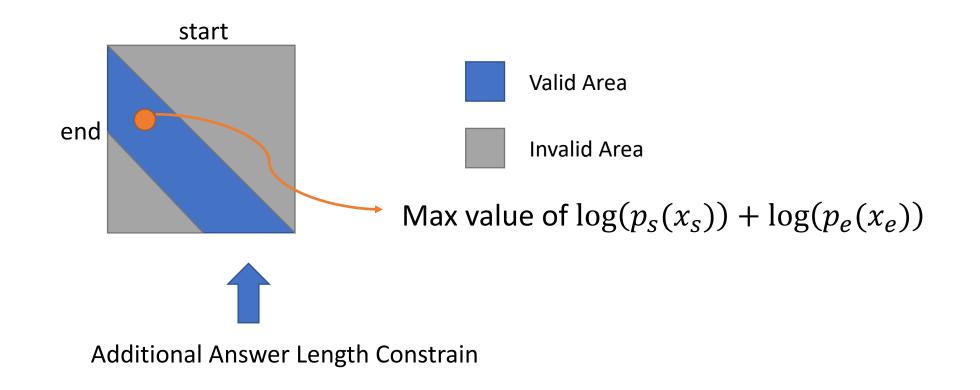






I HAS-QA – Conditional Span Predictor

Problem of Independence:



I HAS-QA – Conditional Span Predictor

Span Probability:

Location Start Hidden Representation: $\mathbf{M^s} = \mathrm{BiGRU}(\mathbf{C})$

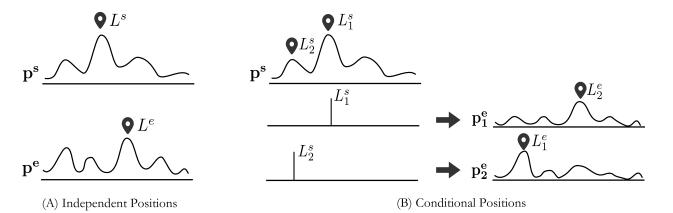
Location Start Distribution:

Location End Hidden Representation:

Location End Distribution:

$$\mathbf{p^{s}} = \operatorname{softmax}(\mathbf{M^{s}}w_{s}),$$
$$\mathbf{M_{j}^{e}} = \operatorname{BiGRU}([\mathbf{C}, \mathbf{M^{s}}, \operatorname{OneHot}(L_{j}^{s})]),$$
$$\mathbf{p_{j}^{e}} = \operatorname{softmax}(\mathbf{M_{j}^{e}}w_{e}),$$

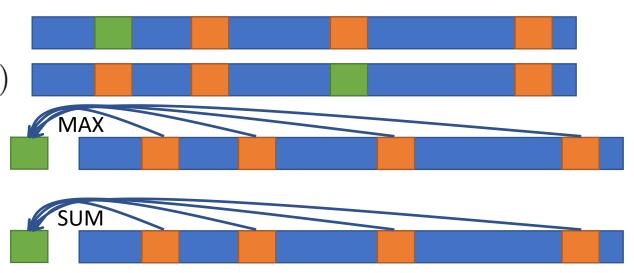
$$P(L_j(A)|Q, P_i) = s_j = \mathbf{p^s}[L_j^s] \cdot \mathbf{p_j^e}[L_j^e].$$



I HAS-QA – Multiple Spans Aggregator

Conditional Answer Probability:

HEAD: $P(A|Q, P_i) = s_1$ RAND: $P(A|Q, P_i) = \text{Random}(s_j)$ MAX: $P(A|Q, P_i) = \max_j(s_j)$ SUM: $P(A|Q, P_i) = \sum_j(s_j)$



I HAS-QA – Paragraph Quality Estimator

Paragraph Probability:

Hidden Representation:

Location Start Distribution Attention:

$$\mathbf{M}^{\mathbf{c}} = \operatorname{Bi}\operatorname{GRU}(\mathbf{C}),$$
$$\hat{q}_i = (\mathbf{M}^{\mathbf{c}^{\top}} \cdot \mathbf{p}^{\mathbf{s}}) \cdot w_c.$$

Apply Softmax across all the given paragraphs:

 $P(P_i|Q, \mathbf{P}) = q_i = \frac{\exp(\hat{q}_i)}{\sum_{P_j \in \mathbf{P}} \exp(\hat{q}_j)}.$

HAS-QA – Algorithms

Algorithm 1 HAS-QA Model in Training Phase							
Input: Q: question; A: answer string;							
P : retrieved paragraphs;							
Output: \mathcal{L} : loss function							
1: 1	for P^+ , P^- in P do:	Negative Sampling					
2:	Get answer location	ns $\mathbf{L^s}$, $\mathbf{L^e}$ for P^+ ;					
3:	Get the context eml	bedding C;					
4:	Compute $\mathbf{p}^{\mathbf{s}}$;	(Eq 9)					
5:	for L_i^s, L_i^e in $\mathbf{L}^s, \mathbf{L}^e$	^e do:					
6:	$p_j^{s} \leftarrow \mathbf{p^s}[L_j^s];$						
7:	\vec{C} ompute \vec{p}_{i}^{e} ;	(Eq 10)					
8:	$p_j^e \leftarrow \mathbf{p_j^e}[L_j^e];$						
9:	$s_j \leftarrow p_j^s p_j^e;$						
10:	Apply function: p^+						
11:	Compute q^+ in $[P^+$	$[, P^{-}]; (Eq 13, Eq 14)$					
12:	$\mathcal{L}_i \leftarrow -(\log(q^+) +$	$-\log(p^+));$					
13: $\mathcal{L} \leftarrow \operatorname{Avg}(\{\mathcal{L}_i\}).$							

Algorithm 2 HAS-QA Model in Inference Phase						
Input: <i>Q</i> : question; P : retrieved paragraphs;						
Output: A_{best} : answer string						
1: for P_i in P do:						
2:	Get the context embedding	ng $\mathbf{C};$				
3:	Compute $\mathbf{p}^{\mathbf{s}}$;	(Eq 9)				
4:	for L_j^s in Top- K_1 p^s do :					
5:	$p_j^s \leftarrow \mathbf{p^s}[L_j^s];$					
6:	Compute \mathbf{p}_{j}^{e} ;	(Eq 10)				
7:	for L_{jk}^e in Top- K_2 p	do:				
8:	$p_{jk}^{\check{e}} \leftarrow \mathbf{p}_{\mathbf{j}}^{\mathbf{e}}[L_{jk}^{e}];$					
9:	$s_{jk} \leftarrow p_j^s p_{jk}^e;$	Beam Search				
10:	Group s_{jk} by extracted answer string A_t ;					
11:	Apply function: $p_i^{A_t} \leftarrow \mathcal{F}(\{s_{jk}\}_{A_t});$					
12:	Compute \hat{q}_i ;	(Eq 13)				
13: Normalize $\{\hat{q}_i\}$ get $\{q_i\}$; (Eq 14)						
14: $S(A_t) \leftarrow \sum_i q_i \cdot p_i^{A_t};$						
15: $A_{best} \leftarrow \arg \max(S(A_t)).$						

I Outline

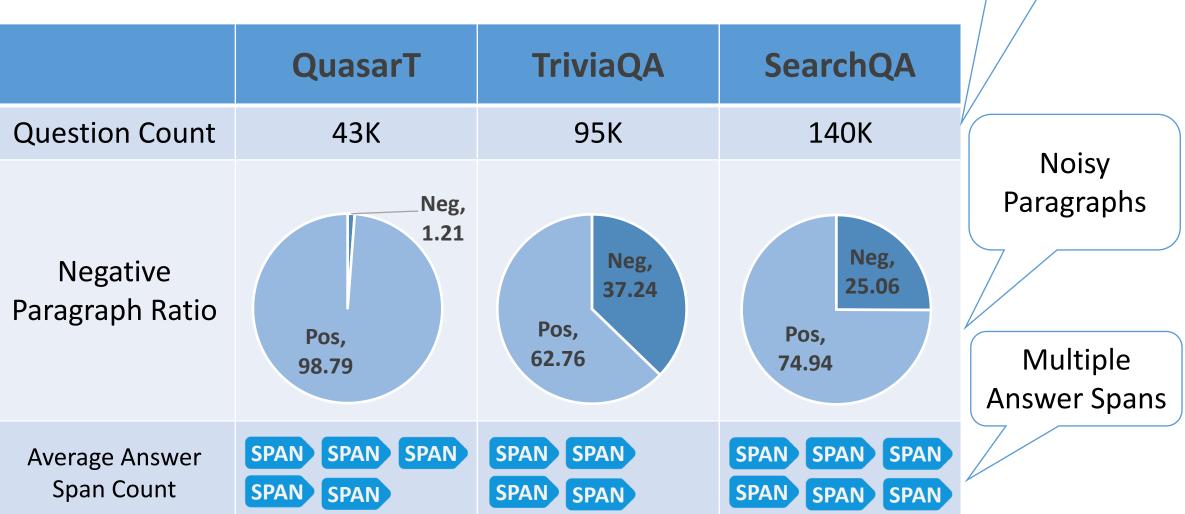
Open-domain Question Answering Challenges Formulation

- o HAS-QA
 - Question Aware Context Encoder
 - Conditional Span Predictor
 - Multiple Spans Aggregator
 - Paragraph Quality Estimator

\circ Experiments

o Conclusion & Going Forward

Three OpenQA Dataset



Large Dataset

Experiments

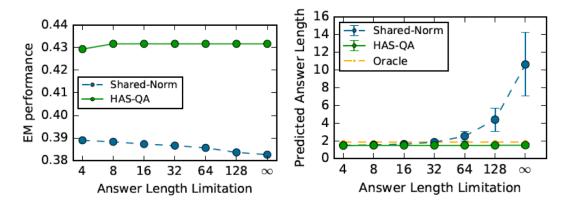
	QuasarT		TriviaQA		SearchQA	
Model		F1	EM	F1	EM	F1
GA (Dhingra et al., 2017a)	0.264	0.264	-	-	-	-
BiDAF (Seo et al., 2016)		0.285	0.411	0.474	0.286	0.346
AQA (Buck et al., 2017)	-	-	-	-	0.387	0.456
DrQA (Chen et al., 2017)	0.377	0.445	0.323	0.383	0.419	0.487
R ³ (Wang et al., 2017a)	0.353	0.417	0.473	0.537	0.490	0.553
Shared-Norm (Clark and Gardner, 2017)	0.386	0.454	0.613	0.672	0.598	0.671
HAS-QA (MAX Ans. Span)	0.432	0.489	0.636	0.689	0.627	0.687

- 1) HAS-QA **outperforms** traditional RC baselines with a large gap, such as GA, BiDAF, AQA listed in the first part.
- 2) HAS-QA **outperforms** recent OpenQA baselines, such as DrQA, R3 and Shared-Norm listed in the second part.

Experimental Analysis

Effects of Conditional Pointer Networks

- 1. The performance of Shared-Norm **decreases** when removing the answer length limitation, while the performance of HAS-QA first **increases** then becomes stable.
- 2. The average predicted answer length increases in Shared-Norm when removing the answer length limitation. However, HAS-QA stably **keeps** the about 1.8 average words, where the oracle average answer length is about 1.9 words.



Example:

About Celebrating the contributions of Louis Braille January 5th , 2009 On the 200th anniversary of Louis Braille⁵ s birth , people around the world are saluting a man whose tactile alphabet has provided a lifeline to people with impaired vision . Shared-Norm HAS-QA

Experimental Analysis

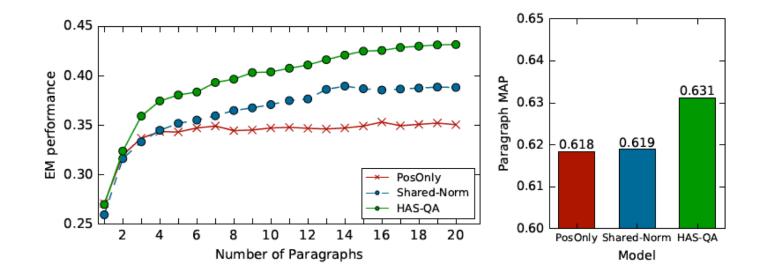
Effects of Multiple Spans Aggregation

Model	EM	F1
HAS-QA (HEAD Ans. Span)	0.372	0.425
HAS-QA (RAND Ans. Span)	0.341	0.394
HAS-QA (SUM Ans. Span)	0.423	0.484
HAS-QA (MAX Ans. Span)	0.432	0.489

- 1. SUM and MAX operations. They take advantages of using multiple answer spans for training and improve about 6% 10% in EM comparing to the HEAD operation.
- 2. The failure of **RAND operation**, mainly comes down to the conflicting training samples.

Experimental Analysis

• Effects of Paragraph Quality



- 1. With the increasing number of given paragraphs which ordered by the rank of search engine, EM performance of HAS-QA **sustainably grows**.
- 2. The Mean Average Precision (MAP) score between the predicted scores and the label whether a paragraph contains answer spans, shows that HAS-QA can rank **the high quality paragraphs** in the front of the given paragraph list.

I Outline

Open-domain Question Answering Challenges Formulation

- o HAS-QA
 - Question Aware Context Encoder
 - Conditional Span Predictor
 - Multiple Spans Aggregator
 - Paragraph Quality Estimator
- \circ Experiments

 $_{\odot}$ Conclusion & Going Forward

I Conclusion

 A new probabilistic formulation of **OpenQA**, based on a three-level hierarchical structure, i.e., the question level, the paragraph level and the answer span level.

$_{\circ}$ HAS-QA Model

- 1) a paragraph quality estimator makes it robust for the paragraphs without answer spans
- 2) a multiple span aggregator points out that it is necessary to combine the contributions of multiple answer spans in a paragraph
- 3) a conditional span predictor is proposed to model the dependence between the start and end positions of each answer span.

I Going Forward

Single Answer Spans Extraction

Multiple Answer Spans Extraction

Well-formed Answers Generation

Name: Liang Pang | Email: pl8787@gmail.com