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Abstract. Existing deep matching methods can be mainly categorized
into two kinds, i.e. representation focused methods and interaction fo-
cused methods. Representation focused methods usually focus on learn-
ing the representation of each sentence, while interaction focused meth-
ods typically aim to obtain the representations of different interaction
signals. However, both sentence level representations and interaction sig-
nals are important for the complex semantic matching tasks. Therefore,
in this paper, we propose a new deep learning architecture to combine
the merits of both deep matching approaches. Firstly, two kinds of word
level matching matrices are constructed based on word identities and
word embeddings, to capture both exact and semantic matching signals.
Secondly, a sentence level matching matrix is constructed, with each el-
ement stands for the interaction between two sentence representations
at corresponding positions, generated by a bidirectional long short term
memory (Bi-LSTM). In this way, sentence level representations are well
captured in the matching process. The above matrices are then fed into
a spatial recurrent neural network (RNN), to generate the high level
interaction representations. Finally, the matching score is produced by
a k-Max pooling and a multilayer perceptron (MLP). Experiments on
paraphrasing identification shows that our model outperforms traditional
state-of-the art baselines significantly.

Keywords: Deep Semantic Matching, Word Level Interactions, Sen-
tence Level Representations

1 Introduction

Matching two sentences is a core problem of many applications in natural lan-
guage processing, such as information retrieval and question answering. Taking
information retrieval as an example, given a query and a document, a matching
function is created to determine the relevance degree between the query and the
document.

Recently, deep neural networks have been applied in this area and achieved
some progresses. These methods can be mainly categorized into two kinds: rep-
resentation focused methods and interaction focused methods. Representation
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focused methods first encode each sentence as one dense vector, and then cal-
culate the similarities of two sentences vectors as the matching score. Typical
examples include ARC-I [3] and CNTN [8]. In general, this approach is straight-
forward and capable to capture the high level semantic meanings of each sen-
tence. However, it will miss important detailed information by compressing such
an entire sentence into a single vector. To tackle this problem, interaction fo-

Fig. 1. An overview of RI-Match. ⊙(interaction in the word identities). ⊗(all interac-
tion functions partly defined in word embedding level and sentence level)).

cused methods turn to directly learn the interactions between two sentences.
They first construct a word level matching matrix to capture detailed word level
interaction signals. Then a deep neural network is applied on this matrix to
abstract high level interaction signals. Finally, an MLP is used to calculate the
matching score. State of the art methods include ARC-II [3], MatchPyramid [7],
MatchSRNN [12], MV-LSTM [11], and BiMPM [14]. Interaction focused meth-
ods have the ability to integrate rich interaction signal, however, sentence level
semantic meanings are not fully captured.

Semantic matching is such a complex problem that both interaction signals
and sentence representations need to be considered. In this paper, we propose
a new deep architecture to integrate them, namely RI-Match5. For word level,
we capture the interaction signals by the word identity and word embedding.
For sentence level information, we adopt a Bi-LSTM to scan each sentence, and
the sentence representations are obtained. Then a matrix can be constructed by
computing the similarity between two sentence representations at corresponding
positions. Finally, the above matrices are fed into a spatial RNN [12], which cap-
tures both nearly and long distant interactions. Furthermore, a k-Max pooling
strategy [11] is adopted to select the top k strongest interaction signals, and a
multi-layer perceptron(MLP) is utilized to obtain the matching score.

We conduct two experiments on different tasks, such as paraphrasing iden-
tification and answer selection. The experimental results show that RI-Match
outperforms traditional interaction and representation focused methods on para-
phrasing identification tasks, demonstrating the advantage of combining the
merits of both approaches.

5 We will release our code when our paper accepted
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2 Related work

Existing deep learning methods for semantic matching can be mainly catego-
rized into two kinds, i.e representation focused methods and interaction focused
methods.

Representation focused methods represent two input sentences individually
to a dense vectors in the same embedding space, and then define different func-
tions to calculate the matching degree of the two sentence vectors. It is common
to adopt the recursive neural network. The advantage of this method is to model
complex and semantic phenomenon in the sentence level. It is easy to complete.
However, the disadvantage is that the encoder would loss detail information of
texts pair.

To tackle this problem, interaction focused methods has been proposed. It
turns to capture more interactions relationship between two texts in word level.
Then the matching degree can be determined by interaction matrix, which has
achieved much attention, examples include MatchPyramid, MatchSRNN and
MV-LSTM. Our method combines the merits of both deep matching methods.

The MatchPyramid constructs basic word level interaction matrix by defining
different similarity functions. Then the model regards the semantic matching as
image recognition by considering the matching matrix as one image. For this
method, it will lose complex semantic matching information in the word level.

To overcome above defects, the same in the word level interaction, the Match-
SRNN adopts neural tensor network to capture more complicated interactions
[9]. Then the spatial RNN calculate the matching degree by the above interac-
tions. This method partly solves the single matching matrix problem and output
an interaction tensor. However, it cannot obtain the higher level interactions.

Different from the MatchPyramid and MatchSRNN, the MV-LSTM captures
the interaction signals of texts in the sentence representations level. However, it
is natural that the key words of texts sometimes partly determine the matching
degree of sentences, this method cannot perfectly capture these signals.

For the above related work, it is natural for us to compose the semantic
matching model with the different level signals, which takes both word level in-
teraction signals and sentence level representations signals into account, namely
RI-Match. It can richly capture the complex semantic matching information by
feeding these two kinds level signals to next layer.

3 Method

In this section, we introduce our method which integrates both representation
and interaction signals for deep semantic matching, namely RI-Match. As shown
in Figure 1, RI-Match consists of four components.

3.1 Interactions and Representations Structure
The goal of this component is to construct matching signals for two sentences
in word interaction level and sentence representations level. Given two sentence
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Q = (q1, · · · , qm) and P = (p1, · · · , pn), where qi and pj denotes the i-th and
j-th word in sentence Q and P . Sequence of word embeddings can be obtained
by mapping each word identity into a vector, where we have Q = (q1, · · · , qm)
and P = (p1, · · · ,pn). In order to construct different level matching signals, we
input both word identities Q and P , and word embeddings Q and P.

Word Level Interactions Signal .
The goal of this part is to represent word level interaction signals for sentences
based on word identities and word embedding. We present several matching
signals as a matching matrix M, with each word-pair sij express the basic in-
teraction between word qi and pj .

Based on Word Identities It is natural for us to think that two sentences
are more relevant if they contain more identical words.

Fig. 2. Xnor operator, where the black circle elements are all value 0.
Xnor can capture such information as follows,

s0(qi, pj) = qi ⊙ pj . (1)
where the ⊙ stands for the Xnor operation, which produce either 1 or 0 to
measure whether two words are the same. We can visualize the matching matrix
M0 in Figure 2. As the example shows that both Q and P contain the words {
team, 2016, NBA }, these partly determine the matching degree of two sentences.

However, the disadvantage of this similarity operator is that it cannot obtain
the semantic matching situations, for example, the similar words matching sig-
nals are ignore. As we know, words ‘won’ and ‘winning’ have the similar meaning
than words ‘won’ and ‘2016’. In order to capture word semantic similarities, we
define similarity operators based on the word embeddings.

Based on Word Embedding The word embedding is a fixed vector for
every individual word, which is pre-trained by Glove. qi and pj stand for the
i-th and j-th word representations in sentence Q and P .

Cosine is a common way to calculate similarity of two word embeddings,
which regarded as the angle of two vectors. We show it as follows,

s1(qi,pj) =
qT
i pj

∥qi∥ · ∥pj∥
. (2)

where ∥ · ∥ stands for the norm of the vector, we adopt L2 norm in this pa-
per. Cosine function guarantees that exact matching signals will get the highest
similarity scores 1.

Dot Product compares to cosine similarity operator, it takes the norm of
word embeddings into account.
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s2(qi,pj) = qT
i pj . (3)

The norm of word embedding can be interpreted as the importance of the word,
for example, none word ‘NBA’ should be important than empty word ‘the’.

Both cosine similarity and dot product similarity treat word similarity as
a scale value s1 and s2 and obtain the matching matrix M1 and M2 shown in
Figure 3 while we also treat word similarity as a representation, such as a vector.

Element-Wise Multiplication is a direct way to combine the signals for
two word vectors, and output a similarity representation of two words, which
can be represented as follows,

s3(qi,pj) = qi ⊙ pj . (4)
where ⊙ stands for element-wise multiplication. This method can produce the
interaction matching vector matrix M3 which is different from the cosine and
dot product, since they just obtain interaction matrix. This interaction signal
can largely retain more details of sentences based on the word embedding.

Fig. 3. Word Level Signals, where the ma-
trix M0,M1,M2,M3 respectively are the
result with operator of xnor, cosine, dot
product and the element-wise multiplica-
tion.

Fig. 4. Sentence Level Representations
Signals, where the matrix M1,M2,M3 re-
spectively are the result with operator of
cosine, dot product and the element-wise
multiplication.

Word Meaning Signal Many deep models describe the word level inter-
action signals mostly in the interaction of two sentences. However, the meaning
of word itself contains much useful information for semantic matching. For this
purpose, we concatenate this signal with the above-mentioned word level inter-
action signals together to enrich the word level signals. First, we use the RNN to
compress the dimension for every word embedding of each sentence, which can
transform the word embedding to a dense vector in low dimension. Meanwhile,
it can avoid a great difference between diverse signals in the dimension. It can
also enrich the representations of every word. For the sentence Q = (q1, ..., qm)
and P = (p1, ...,pn), it will get the new word representations as follows.

(q1, ..., qm)
RNN−→ (ql

1, ..., q
l
m),

(p1, ...,pn)
RNN−→ (pl

1, ...,p
l
n).
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where the ql
i and pl

j separately stands for the new word representations for qi
and pj , we show the RNN state in Figure 3.

We cannot directly concatenate above representations with the word interac-
tion signals. In the word interaction signals, it contains the m× n vectors, each
vector represents every word-pairs interactions of two sentences. However for Q
it contains m vectors and for P it contains n vectors. In order to concatenate
word meaning signals with interaction signals, we stack every new word repre-
sentations for n times to get the vector matrix Mq. For this method, We can get
the vector matrix Mp in the similar way for m times as follows.

sq(ij), ∀j ∈ [1, n]⇔ ql
i

sp(ij), ∀i ∈ [1,m]⇔ pl
j

where the sq(ij) is an vector in Mq shown in Figure 3, ql
i stacked with n times

by row with the same color, therefore when ∀j ∈ [1, n], they all stands for the
ql
i. Similarly, we obtain Mp by stacking pl

j with m times by column.
Finally, by concatenating the above-mentioned signals based on word identi-

ties and word embedding, we get the signals vector of sentences in word level as
follows. We can see Figure 3 , it shows the detail of word level signals including
word interactions signals and word meaning signals.

sword = [s0, s1, s2, s
T
3 , s

T
q , s

T
p ]

T (5)

Sentence Level Representations Signal .
The higher level matching signals are important to determine whether two sen-
tences are match. The sentence representations signals depend on contextual
information. Therefore, we adopt a parameter-shared bi-directional LSTM [4] to
encode contextual embeddings to capture such information. It can well capture
nearby words in the encode process.

For embedding matrix Q = (q1, ..., qm), bidirectional LSTM takes both pre-
vious and future context into account from two directions. Therefore, we utilize
Bi-LSTM to process the input for each time-step as follows:

−→
h q

i =
−−−−→
LSTM(hq

i−1, qi), i ∈ [1,m],
←−
h q

i =
←−−−−
LSTM(hq

i+1, qi), i ∈ [1,m].
(6)

Meanwhile , we apply the same BiLSTM to encode P = (p1, ...,pn):
−→
h p

j =
−−−−→
LSTM(hp

j−1,pj), j ∈ [1, n],
−→
h p

j =
←−−−−
LSTM(hp

j+1,pj), j ∈ [1, n].
(7)

Therefore, we concatenate two vectors−→h t and←−h t together as h = [
−→
h T

t ,
←−
h T

t ]
T

for each position of sentence. It stands for t-th sentence representations from the
two directions of the whole sentence. The (·)T stands for the transposition oper-
ation. Then we can obtain the encode matrices as QEncode = (hq

1, ...,h
q
m) and

PEncode = (hp
1, ...,h

p
n) We adopt the interaction functions used in word level

interaction signals, then we can obtain the sentence representations interaction
vector as follows, the Figure 4 shows the detail of sentence representations signals
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vector.

s1(h
q
i ,h

p
j ) =

hqT
i hp

j

∥hq
i ∥ · ∥h

p
j∥

,

s2(qi,pj) = hqT
i hp

j .

s3(h
q
i ,h

p
j ) = hq

i ⊙ hp
j ,

ssentence = [s1, s2, s3
T]T.

(8)

Finally, we concatenate the word level interactions signals and sentence level
representations signals together as follow.

sij = [sTword, s
T
sentence]

T. (9)
where sij contains multiple signals in word interactions level and sentence rep-
resentations level. For word level, it contains the word meaning signals and word
interaction signals. Therefore, the output of this layer is tensor matrix of signals.
3.2 Spatial RNN

The second step is to apply spatial RNN to obtain the sentence interaction from
multi-signals construction layer, from which we get multiple signals of two sen-
tences in the word level and sentence representations level. Spatial RNN is a
variation on the multi-dimensional RNN [1]. For the spatial RNN, given the in-
teractions representations of prefixes Q[1 : i−1] ∼ P [1 : j], Q[1 : i] ∼ P [1 : j−1]
and Q[1 : i − 1] ∼ P [1 : j − 1], expressed as hi−1,j ,hi,j−1 and hi−1,j−1, the
interaction of prefixes Q[1 : i] ∼ P [1 : j] can be calculated by following equation:

hij = f(hi−1,j ,hi,j−1,hi−1,j−1, sij). (10)
Where sij stands for the signals information from the multi-signals construction
layer including word level interactions signals and sentence level representations
signals.

We have many choices for function f . We adopt GRU since it has shown
excellent performance in many tasks. In this paper, we use spatial RNN changed
from traditional GRU. We extend it to spatial RNN as follows.

q = [hT
i−1,j ,h

T
i,j−1,h

T
i−1,j−1, s

T
ij ]

T,

rl = σ(W (rl)q + b(rl)), rt = σ(W (rt)q + b(rt)),

rd = σ(W (rd)q + b(rd)), rT = [rTl , r
T
t , r

T
d ],

z′
i = (W (zi)q + b(zi)), z′

l = (W (zl)q + b(zl)),

z′
t = (W (zt)q + b(zt)), z′

d = (W (zd)q + b(zd)),

[zi, zl, zt, zz] = SoftmaxByRow([z′
i, z

′
l, z

′
t, z

′
z]),

(11)

h′
ij = ϕ(Wsij + U(r ⊙ [hT

i−1,j ,h
T
i,j−1,h

T
i−1,j−1]

T) + b),

hij = zl ⊙ hi,j−1 + zt ⊙ hi−1,j + zd ⊙ hi−1,j−1 + zi ⊙ h′
i,j . (12)

where U,W ′s and b′s are parameters, and SoftmaxByRow is a function to
calculate softmax for every dimension by the four gates, as following:

[z′
p]j =

e[z
′
p]j

e[z
′
p]j + e[z

′
p]l + e[z

′
p]t + e[z

′
p]d

, p = i, l, t, d.
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3.3 k-Max Pooling

Since spatial RNN getting the global interaction vectors between two texts, we
introduce the third step to process such information by k-Max pooling.

The strong signals largely determine the matching degree of two sentences,
these method has been approved to be valid in MV-LSTM. Therefore, we use
k-Max pooling to automatically select top k strongest signals in the global in-
teraction tensor, similar to [5]. Specifically for the spatial RNN matrix, we scan
the matrix and directly return the top k values of every slice by the descending
order to form a vector q.

3.4 MultiLayer Perception

Finally, we use a MLP to obtain the matching degree by aggregating the strong
interaction information chosen by k-Max pooling, such information can be rep-
resented as vector q. For obtaining higher level representation r, vector q is feed
into a full connection hidden layer. The final matching score can be obtained
with a linear function:

r = f(Wsq + br), s = Wsr + bs.
where Wr and Ws donate the parameter metrics, and br and bs are corresponding
biases.

4 Experiments

In this section, we verify our model performance on two tasks: paraphrasing
identification (PI) and answer sentence selection (ASS). We compare our model
with state-of-the-art models on some standard benchmark datasets including
Quora-question-pairs and WikiQA, to demonstrate the superiority of RI-Match
against baselines.

4.1 Experimental Settings

First, we introduce our experimental settings, including parameter setting, and
evaluation metrics.

Parameter settings We initialize word embeddings in the word embed-
ding layer with 300-dimensional Glove word vectors pre-trained in the 840B
Common Crawl corpus. On the paraphrasing identification task, we set the hid-
den dimension as 50 for Bi-LSTM and 40 for Spatial RNN. For the word meaning
level, we set hidden size as 5 for the RNN, and set the top k as 5 for k-Max pool-
ing, the learning rate is set to 0.001. On the answer selection task, we set the
hidden dimension as 50 for Bi-LSTM and 10 for Spatial RNN. For the word
meaning level , we set hidden size as 1 for the RNN, and set the topk as 10 for
k-Max pooling, the learning rate is set to 0.0001. To train the model, we leverage
Adam as our optimizer to update the parameters, and minimize the categorical
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cross entropy of the training set until the model convergence.

Evaluation Metrics The PI is the binary classification problem, we adopt
accuracy to evaluation the performance on this task. ASS can be considered as a
ranking problem, we utilize mean average precision (MAP) and mean reciprocal
rank (MRR).

where N is the number of testing ranking lists, M is the number of positive
sentence in a ranking list. S

+(i)
j is the j − th positive sentence in the i − th

ranking list, r(·) denotes the rank of a sentence in the ranking list.
Table 1. Performance on Quora Question
Dataset.

Models Accuracy(%)

Siamese CNN 79.60
Multi-Perspective-CNN 81.38

Siamese-LSTM 82.58
Multi-Perspective-LSTM 83.21

L.D.C. 85.55
BiMPM-w/o-tricks 85.88

BiMPM-Full 88.17
RI-Match-WL 83.86

RI-Match-WL-w/o-cos 83.42
RI-Match-PSL 82.76
RI-Match-Full 85.91

Table 2. Performance on the WikiQA
Dataset.

Models MAP MRR

Word Count 0.652 0.665
ABCNN 0.692 0.711

Attention-CNN 0.689 0.696
Attention-LSTM 0.688 0.707

L.D.C. 0.705 0.723
GRU 0.659 0.669

BiMPM 0.718 0.731
RI-Match-Full 0.689 0.692

4.2 Paraphrasing Identification
Paraphrasing identification aims to determine whether two sentences tell the
same story. In this Sub-section, we compare our model with relatively new base-
lines on the paraphrasing identification task.
Dataset To evaluate the effectiveness of our model, we perform our experi-
ments on the dataset of ”Quora Question Pairs”. To be a fair comparison, we
adopt the splitting ways of [15]. This dataset consists of over 400,000 question
pairs, and each question pair is annotated with a binary value indicating whether
the two questions pairs are paraphrase of each other. The authors randomly se-
lect 5,000 paraphrases and 5,000 non-paraphrases as the dev set, and sample
another 5,000 paraphrases and 5,000 non-paraphrases as the test set. Then they
keep the remaining pairs as the training set. For getting the detail of dataset,
please refer to [15] 6

Baseline To make a sufficient comparison, we choose six relatively new base-
lines: Siamese CNN [6], Multi-Perspective CNN [2], Siamese-LSTM [10], Multi-
Perspective-LSTM[2], L.D.C [16], BiMPM. For these baselines, they all adopt
the above-mentioned splitting ways for the datasets.
6 We can obtain the source codes and dataset partition at:

https://zhiguowang.github.io.
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– For the representation based methods, the Siamese CNN and Siamese-LSTM
encode the sentence into dense vectors separately by CNN and LSTM. With
the multi-perspective technique, the Siamese models are promoted as Multi-
Perspective-CNN and Multi-Perspective-LSTM.

– For the interaction based methods, the L.D.C takes both the similarities and
dissimilarities into account by decomposing and composing lexical semantics
over texts. And the BiMPM guides the interaction with the attention-base
neural architecture by encodes each sentence both in word embedding and
character embedding level. Both models have obtained the state-of-the art
baselines in this datasets.

Performance Comparison For a fair comparison with above baselines, we
directly generate the result under the same setting from the literature. To be fair,
we implement the BiMPM without the ticks ( e.g character embedding, dropout,
etc), we also list the baseline of BiMPM-Full with these tricks in table 1. In order
to show the influence of different level signals for semantic matching. We test
the performance of RI-Match for it contains the signals just in the word level
(RI-Match-WL) or the sentence representations level (RI-Match-PSL) and the
full model (RI-Match-Full). The results are listed in Table 1. From the results,
we could conclude the experimental findings as follows.

1. The models belong to interaction focused methods outperform the repre-
sentation focused methods. This mainly emphasizes the importance of in-
teraction structure. Representing the sentence to a vector directly will lost
many information, this is an important factor that more deep models focus
on describing the interaction of the texts.

2. Our model are better than all baselines, achieving the state-of-the-art per-
formance. This illustrates the effectiveness of our model.

3. The RI-Match-Full is better than the RI-Match-WL and RI-Match-PSL,
which shows that the signals both in word level and sentence representations
level are important for semantic matching. We define more ways to construct
the signals in word level rather than the sentence representations level, in-
cluding word meaning signals and word level interaction signals. Therefore,
we can see that RI-Match-WL is 1.1 point percentage higher than the RI-
Match-PSL. This gap is obvious in this dataset. For further explanation for
this, we check the performance just in word level without the cosine signals
(RI-Match-WL-without-cos). We can see that RI-Match-WL is better than
RI-Match-WL-without-cos. This means that we can improve performance of
model in some extent by defining more different signals in each level.

4.3 Answer Selection

Answer selection is a task to rank the candidate answers based on their matching
degree to the question. Evaluation metrics of this tasks are mean average preci-
sion (MAP) and mean reciprocal rank (MRR). We experiment on the WikiQA
dataset.
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Dataset WikiQA is a public benchmark datasets, we need to rank the candi-
date answers according to a question. It includes 20,360 question-answer pairs
in training set, 1,126 pairs in development set and 2,341 pairs in test set. We
filter the questions without the correct answers.
Baseline To make a fair comparison, we select following baselines.

– Word Count: is non-neural architecture, it calculates the frequency of non-
stop words between question and answer.

– GRU: is used to obtain the sentence representations signals, it calculate the
similarity of the sentence vector.

– ABCNN, BiMPM: ABCNN and BiMPM belong to the interaction focused
methods introduced in related work, they are two state-of-art baselines for
this task.

– Attention-based models: both the Attention-based-CNN [17] and Attention-
based-LSTM [13] build the attention matrix after sentence representation,
they adopt CNN and LSTM separately to encode sentences.

Performance Comparison For a effective comparison, we report the results
under the same setting from the literature. In the table 2, we can see that RI-
Match can do well on this task. Compared with the non-neural architecture,
our models can automatically extract more semantic signals from the data, then
leading the better performance. For BiMPM, they obtained their best perfor-
mance by using the character embedding, it can richly capture the information
in the input layer. The GRU belongs to the representation focused methods
which encode the sentence by GRU. Both the L.D.C and BiMPM are belongs
to interaction focused methods, they describe the interaction on the sentence
representations level. From above, we can see that deep models basically beat
the traditional method. In deep models, describing the interaction of texts some-
times can achieve better result. Our model can also do well in this task except
the paraphrasing identification task.

5 Conclusions
In this paper, we propose a deep model by integrating both interactions and
representations for deep semantic matching, namely RI-Match. We define vari-
ous measure functions in each level to produce signals. Moreover, we adopt the
spatial RNN to capture the recursive matching structure, which has good perfor-
mance in many semantic matching tasks. Our model has the good performance
in paraphrasing identification and answer selection tasks.

Our models can be further extended in many respects. In the word interac-
tions level based on the word identities, we just adopt the xnor to capture the
interaction of two words. We can define the more interpretable signals to enrich
the signals for the word level interaction. In the future we plan to increase this
signals, then the RI-Match will be rich for the semantic matching.
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