
A Deep Architecture for Semantic Matching
with Multiple Positional Sentence Representations

Shengxian Wan∗, Yanyan Lan†, Jiafeng Guo†, Jun Xu†, Liang Pang∗, and Xueqi Cheng†
CAS Key Lab of Network Data Science and Technology

Institute of Computing Technology, Chinese Academy of Sciences, China
∗{wanshengxian, pangliang}@software.ict.ac.cn, †{lanyanyan, guojiafeng, junxu, cxq}@ict.ac.cn

Abstract

Matching natural language sentences is central for many
applications such as information retrieval and question
answering. Existing deep models rely on a single sen-
tence representation or multiple granularity represen-
tations for matching. However, such methods cannot
well capture the contextualized local information in the
matching process. To tackle this problem, we present a
new deep architecture to match two sentences with mul-
tiple positional sentence representations. Specifically,
each positional sentence representation is a sentence
representation at this position, generated by a bidirec-
tional long short term memory (Bi-LSTM). The match-
ing score is finally produced by aggregating interac-
tions between these different positional sentence rep-
resentations, through k-Max pooling and a multi-layer
perceptron. Our model has several advantages: (1) By
using Bi-LSTM, rich context of the whole sentence is
leveraged to capture the contextualized local informa-
tion in each positional sentence representation; (2) By
matching with multiple positional sentence representa-
tions, it is flexible to aggregate different important con-
textualized local information in a sentence to support
the matching; (3) Experiments on different tasks such
as question answering and sentence completion demon-
strate the superiority of our model.

Introduction
Semantic matching is a critical task for many applications
in natural language processing (NLP), such as information
retrieval (Li and Xu 2013), question answering (Berger et
al. 2000) and paraphrase identification (Dolan, Quirk, and
Brockett 2004). Taking question answering as an example,
given a pair of question and answer, a matching function
is required to determine the matching degree between these
two sentences.

Recently, deep neural network based models have been
applied in this area and achieved some important progresses.
A lot of deep models follow the paradigm to first represent
the whole sentence to a single distributed representation, and
then compute similarities between the two vectors to output
the matching score. Examples include DSSM (Huang et al.
2013), CDSMM (Shen et al. 2014), ARC-I (Hu et al. 2014),

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

CNTN (Qiu and Huang 2015) and LSTM-RNN (Palangi et
al. 2015). In general, this paradigm is quite straightforward
and easy to implement, however, the main disadvantage lies
in that important local information is lost when compressing
such a complicated sentence into a single vector. Taking a
question and two answers as an example:

Q: “ Which teams won top three in the World Cup?”
A1: “ Germany is the champion of the World Cup.”
A2: “The top three of the European Cup are Spain,

Netherlands and Germany. ”
We can see that the keywords such as “top three” and

“World Cup” are very important to determine which answer
(between A1 and A2) is better for Q. When attending to “top
three”, obviously A2 is better than A1; while if attending to
“World Cup”, we can get an opposite conclusion. However,
single sentence representation methods cannot well capture
such important local information, by directly representing a
complicated sentence as a single compact vector (Bahdanau,
Cho, and Bengio 2014).

Some other works focus on taking multiple granularity,
e.g. word, phrase, and sentence level representations, into
consideration for the matching process. Examples include
ARC-II (Hu et al. 2014), RAE (Socher et al. 2011), Deep-
Match (Lu and Li 2013), Bi-CNN-MI (Yin and Schütze
2015a) and MultiGranCNN (Yin and Schütze 2015b). They
can alleviate the above problem, but are still far from com-
pletely solving the matching problem. That is because they
are limited to well capture the contextualized local informa-
tion, by directly involving word and phrase level representa-
tions. Taking the following answer as an example:

A3: “The top three attendees of the European Cup are
from Germany, France and Spain.”

Obviously, A2 is better than A3 with respect to Q, al-
though both of them have the important keywords “top
three”. This is because the two terms of “top three” have
different meanings from the whole sentence perspective.
“top three” in A2 focuses on talking about top three football
teams, while that in A3 is indicating the top three attendees
from different countries. However, existing multiple gran-
ularity deep models cannot well distinguish the two “top
three”s. This is mainly because the word/phrase level rep-
resentations are local (usually depend on contexts in a fixed
window size), thus limited to reflect the true meanings of
these words/phrases (e.g. top three) from the perspective of

the whole sentence.
From the above analysis, we can see that the matching

degree between two sentences requires sentence representa-
tions from contextualized local perspectives. This key ob-
servation motivates us to conduct matching from multiple
views of a sentence. That is to say, we can use multiple sen-
tence representations in the matching process, with each sen-
tence representation focusing on different local information.

In this paper, we propose a new deep neural network ar-
chitecture for semantic matching with multiple positional
sentence representations, namely MV-LSTM. Firstly, each
positional sentence representation is defined as a sentence
representation at one position. We adopt a bidirectional long
short term memory (Bi-LSTM) to generate such positional
sentence representations in this paper. Specifically for each
position, Bi-LSTM can obtain two hidden vectors to reflect
the meaning of the whole sentence from two directions when
attending to this position. The positional sentence represen-
tation can be generated by concatenating them directly. The
second step is to model the interactions between those posi-
tional sentence representations. In this paper, three different
operations are adopted to model the interactions: cosine, bi-
linear, and tensor layer. Finally, we adopt a k-Max pooling
strategy to automatically select the top k strongest interac-
tion signals, and aggregate them to produce the final match-
ing score by a multi-layer perceptron (MLP). Our model is
end to end, and all the parameters are learned automatically
from the training data, by BackPropagation and Stochastic
Gradient Descent.

We can see that our model can well capture contextualized
local information in the matching process. Compared with
single sentence representation methods, MV-LSTM can well
capture important local information by introducing multiple
positional sentence representations. While compared with
multiple granularity deep models, MV-LSTM has leveraged
rich context to determine the importance of the local infor-
mation by using Bi-LSTM to generate each positional sen-
tence representation. Finally, we conduct extensive exper-
iments on two tasks, i.e. question answering and sentence
completion, to validate these arguments. Our experimental
results show that MV-LSTM can outperform several existing
baselines on both tasks, including ARC-I , ARC-II, CNTN,
DeepMatch, RAE, MultiGranCNN and LSTM-RNN.

The contribution of this work lies in three folds:
• the proposal of matching with multiple positional sen-

tence representations, to capture important contextualized
local information;

• a new deep architecture to aggregate the interactions
of those positional sentence representations for seman-
tic matching, with each positional sentence representation
generated by a Bi-LSTM;

• experiments on two tasks (i.e. question answering and
sentence completion) to show the benefits of our model.

Our Approach
In this section, we present our new deep architecture for
matching two sentences with multiple positional sentence
representations, namely MV-LSTM. As illustrated in Figure

1, MV-LSTM consists of three parts: Firstly, each positional
sentence representation is a sentence representation at one
position, generated by a bidirectional long short term mem-
ory (Bi-LSTM); Secondly, the interactions between differ-
ent positional sentence representations form a similarity ma-
trix/tensor by different similarity functions; Lastly, the final
matching score is produced by aggregating such interactions
through k-Max pooling and a multilayer perceptron.

Step 1: Positional Sentence Representation
Each positional sentence representation requires to reflect
the representation of the whole sentence when attending to
this position. Therefore, it is natural to use a Bi-LSTM to
generate such representation because LSTM can both cap-
ture long and short term dependencies in the sentences. Be-
sides, it has a nice property to emphasize nearby words in the
representation process (Bahdanau, Cho, and Bengio 2014).

Firstly, we give an introduction to LSTM and Bi-LSTM.
Long short term memory (LSTM) is an advanced type of
Recurrent Neural Network by further using memory cells
and gates to learn long term dependencies within a se-
quence (Hochreiter and Schmidhuber 1997). LSTM has sev-
eral variants (Greff et al. 2015), and we adopt one com-
mon implementation used in (Graves, Mohamed, and Hinton
2013), but without peephole connections, as did in (Palangi
et al. 2015). Given an input sentence S = (x0, x1, · · · , xT),
where xt is the word embedding at position t. LSTM outputs
a representation ht for position t as follows.

it = σ(Wxixt +Whiht−1 + bi),

ft = σ(Wxfxt +Whfht−1 + bf),

ct = ftct−1 + it tanh(Wxcxt +Whcht−1 + bc),

ot = σ(Wxoxt +Whoht−1 + bo),

ht = ot tanh(ct)

where i, f, o denote the input, forget and output gates re-
spectively. c is the information stored in memory cells and
h is the representation. Compared with single directional
LSTM, bidirectional LSTM utilizes both the previous and
future context, by processing the data from two directions
with two separate LSTMs (Schuster and Paliwal 1997). One
LSTM processes the input sequence in the forward direction
while the other processes the input in the reverse direction.
Therefore, we can obtain two vectors

−→
ht and

←−
ht for each po-

sition.
Intuitively,

−→
ht and

←−
ht reflect the meaning of the whole

sentence from two directions when attending to this posi-
tion, therefore it is reasonable to define the positional sen-
tence representation as the combination of them. Specifi-
cally, for each position t, the t-th positional sentence rep-
resentation pt is generated by concatenating

−→
ht and

←−
ht ,

i.e. pt = [
−→
ht

T ,
←−
ht

T]T , where (·)T stands for the transpo-
sition operation which will also be used later.

Step 2: Interactions Between Two Sentences
On the basis of positional sentence representations, we can
model the interactions between a pair of sentences from dif-
ferent positions. Many kinds of similarity functions can be

Figure 1: Illustration of MV-LSTM. SX and SY are the in-
put sentences. Positional sentence representations (denoted
as the dashed orange box) are first obtained by a Bi-LSTM.
k-Max pooling then selects the top k interactions from each
interaction matrix (denoted as the blue grids in the graph).
The matching score is finally computed through a multi-
layer perceptron.

used for modeling the interactions between pXi and pY j ,
where pXi and pY j stand for the i and j-th positional sen-
tence representations for two sentences SX and SY , respec-
tively. In this paper, we use three similarity functions, in-
cluding cosine, bilinear and tensor layer. Given two vectors
u and v, the three functions will output the similarity score
s(u, v) as follows.

Cosine is a common function to model interactions. The
similarity score is viewed as the angle of two vectors:

s(u, v) =
uT v

||u|| · ||v||
,

where || · || stands for the L2 norm.
Bilinear further considers interactions between different

dimensions, thus can capture more complicated interactions
as compared with cosine. Specifically, the similarity score is
computed as follows:

s(u, v) = uTMv + b,

where M is the matrix to reweight the interactions between
different dimensions, and b is the bias. When applying bi-
linear to compute the interaction between two correspond-
ing positional sentence representations pXi and pY j for sen-
tence SX and SY , obviously bilinear can well capture the
interleaving interactions between

−−→
hXi and

←−−
hY j , while cosine

cannot. Therefore bilinear can capture more meaningful in-
teractions between two positional sentence representations,
compared with cosine.

Tensor Layer is more powerful than the above two func-
tions, which can roll back to other similarity metrics such as
bilinear and dot product. It has also shown great superiority
in modeling interactions between two vectors (Socher et al.
2013b; 2013a; Qiu and Huang 2015). That’s why we choose

it as an interaction function in this paper. Other than out-
puting a scalar value as bilinear and cosine do, tensor layer
outputs a vector, as described as follows.

s(u, v) = f(uTM [1:c]v +Wuv

[
u
v

]
+ b),

whereM i, i ∈ [1, ..., c] is one slice of the tensor parameters,
Wuv and b are parameters of the linear part. f is a non-linear
function, and we use rectifier f(z) = max(0, z) (Glorot,
Bordes, and Bengio 2011) in this paper, since it always out-
puts a positive value which is compatible as a similarity.

We can see that the outputs of the former two similarity
functions (i.e. cosine and bilinear) are both interaction matri-
ces, while the tensor layer will output an interaction tensor,
as illustrated in Figure 1.

Step 3: Interaction Aggregation
Now we introduce the third step of our architecture, i.e. how
to integrate such interactions between different positional
sentence representations to output a matching score for two
sentences.

k-Max Pooling The matching between two sentences
is usually determined by some strong interaction signals.
Therefore, we use k-Max pooling to automatically extract
top k strongest interactions in the matrix/tensor, similar to
(Kalchbrenner, Grefenstette, and Blunsom 2014). Specifi-
cally for the interaction matrix, we scan the whole matrix
and the top k values are directly returned to form a vector
q according to the descending order. While for the interac-
tion tensor, the top k values of each slice of the tensor are
returned to form a vector. Finally, these vectors are further
concatenated to a single vector q.
k-Max pooling is meaningful: suppose we use cosine sim-

ilarity, when k = 1, it directly outputs the largest interaction,
which means that only the “best matching position” is con-
sidered in our model; while k is larger than 1 means that
we utilize the top k matching positions to conduct seman-
tic matching. Therefore, it is easy to detect where the best
matching position lies, and whether we need to aggregate
multiple interactions from different positions for matching.
Our experiments show that the best matching position is usu-
ally not the first or last one, and better results can be obtained
by leveraging matchings on multiple positions.

MultiLayer Perception Finally, we use a MLP to output
the matching score by aggregating such strong interaction
signals filtered by k-Max pooling. Specifically, the feature
vector q obtained by k-Max pooling is first feed into a full
connection hidden layer to obtain a higher level represen-
tation r. Then the matching score s is obtained by a linear
transformation:

r = f(Wrq + br), s =Wsr + bs,

where Wr and Ws stands for the parameter matrices, and br
and bs are corresponding biases.

Model Training
For different tasks, we need to utilize different loss functions
to train our model. For example, if the task is formalized

as a ranking problem, we can utilize pairwise ranking loss
such as hinge loss for training. Given a triple (SX , S

+
Y , S

−
Y),

where S+
Y is ranked higher than S−Y when matching with

SX , the loss function is defined as:

L(SX , S
+
Y , S

−
Y) = max(0, 1− s(SX , S

+
Y) + s(SX , S

−
Y))

where s(SX , S
+
Y) and s(SX , S

−
Y) are the corresponding

matching scores.
All parameters of the model, including the parameters of

word embedding, Bi-LSTM, interaction function and MLP,
are trained jointly by BackPropagation and Stochastic Gra-
dient Descent. Specifically, we use Adagrad (Duchi, Hazan,
and Singer 2011) on all parameters in training.

Discussions
MV-LSTM can cover LSTM-RNN (Palangi et al. 2015) as
a special case. Specifically, if we only consider the last po-
sitional sentence representation of each sentence, generated
by a single directional LSTM, MV-LSTM directly reduces
to LSTM-RNN. Therefore, MV-LSTM is more general and
has the ability to leverages more positional sentence repre-
sentations for matching, as compared with LSTM-RNN.

MV-LSTM has implicitly taken multiple granularity into
consideration. By using Bi-LSTM, which has the ability to
involve both long and short term dependencies in represent-
ing a sentence, MV-LSTM has the potential to capture im-
portant n-gram matching patterns. Furthermore, MV-LSTM
is flexible to involve important granularity adaptively, com-
pared with CNN based models using fixed window sizes.

Experiments
In this section, we demonstrate our experiments on two dif-
ferent matching tasks, question answering (QA) and sen-
tence completion (SC).

Experimental Settings
Firstly, we introduce our experimental settings, including
baselines, parameter settings, and evaluation metrics.

Baselines The experiments on the two tasks use the same
baselines listed as follows.

• Random Guess: outputs a random ranking list for testing.

• BM25: is a popular and strong baseline for information
retrieval (Robertson et al. 1995).

• ARC-I: uses CNNs to construct sentence representations
and relies on a MLP to produce the final matching score
(Hu et al. 2014).

• ARC-II: firstly generates local matching patterns, and
then composites them by multiple convolution layers to
produce the matching score (Hu et al. 2014).

• CNTN: is based on the structure of ARC-I, but further
uses a tensor layer to compute the matching score, instead
of a MLP (Qiu and Huang 2015).

• LSTM-RNN: adopts a LSTM to construct sentence repre-
sentations and uses cosine similarity to output the match-
ing score (Palangi et al. 2015).

• RAE: relies on a recursive autoencoder to learn multiple
levels’ representations (Socher et al. 2011).

• DeepMatch: considers multiple granularity from the per-
spective of topics, obtained via LDA(Lu and Li 2013).

• MultiGranCNN: first uses CNNs to obtain word, phrase
and sentence level representations, and then computes the
matching score based on the interactions among all these
representations (Yin and Schütze 2015b).
We can see that ARC-I, CNTN and LSTM-RNN are all

single sentence representation models, while ARC-II, Deep-
Match, RAE and MultiGranCNN represent a sentence with
multiple granularity.

Parameter settings Word embeddings required in our
model and some other baseline deep models are all initial-
ized by SkipGram of word2vec (Mikolov et al. 2013). For
SC, word embedding are trained on Wiki corpus1 for directly
comparing with previous works. For QA, word embeddings
are trained on the whole QA dataset. The dimensions are all
set to 50. Besides, the hidden representation dimensions of
LSTMs are also set to 50. The batchsize of SGD is set to
128 for both tasks. All other trainable parameters are initial-
ized randomly by uniform distribution with the same scale,
which is selected according to the performance on valida-
tion set ((-0.1,0.1) for both tasks). The initial learning rates
of AdaGrad are also selected by validation (0.03 for QA and
0.3 for SC).

Evaluation Metrics Both tasks are formalized as a rank-
ing problem. Specifically, the output is a ranking list of sen-
tences according to the descending order of matching scores.
The goal is to rank the positive one higher than the negative
ones. Therefore, we use Precision at 1 (denoted as P@1) and
Mean Reciprocal Rank (MRR) as evaluation metrics. Since
there is only one positive example in a list, P@1 and MRR
can be formalized as follows,

P@1 =
1

N

N∑
i=1

δ(r(S
+(i)
Y) = 1),

MRR =
1

N

N∑
i=1

1

r(S
+(i)
Y)

,

where N is the number of testing ranking lists, S+(i)
Y is the

positive sentence in the i − th ranking list, r(·) denotes the
rank of a sentence in the ranking list, and δ is the indicator
function.

Question Answering
Question answering (QA) is a typical task for semantic
matching. In this paper, we use the dataset2 collected from
Yahoo! Answers which is a community question answering
system where some users propose questions to the system
and other users will submit their answers. The user who

1http://nlp.stanford.edu/data/WestburyLab.
wikicorp.201004.txt.bz2

2http://webscope.sandbox.yahoo.com/
catalog.php?datatype=l&did=10

Table 1: Examples of QA dataset.

SX
How to get rid of memory stick error of my sony
cyber shot?

S+
Y

You might want to try to format the memory stick
but what is the error message you are receiving.

S−Y
Never heard of stack underflow error, overflow yes,
overflow is due to running out of virtual memory.

Table 2: The effect of pooling parameter k on QA.
P@1 MRR

LSTM-RNN 0.690 0.822
Bi-LSTM-RNN 0.702 0.830
MV-LSTM (k=1) 0.726 0.843
MV-LSTM (k=3) 0.736 0.849
MV-LSTM (k=5) 0.739 0.852
MV-LSTM (k=10) 0.740 0.852

proposes the question will decide which one is the best an-
swer. The whole dataset contains 142,627 (question, answer)
pairs, where each question is accompanied by its best an-
swer. We select the pairs in which questions and their best
answers both have a length between 5 and 50. After that,
we have 60,564 (questions, answer) pairs which form the
positive pairs. Negative sampling is adopted to construct the
negative pairs. Specifically for each question, we first use its
best answer as a query to retrieval the top 1,000 results from
the whole answer set, with Lucene3. Then we randomly se-
lect 4 answers from them to construct the negative pairs. At
last, we separate the whole dataset to the training, valida-
tion and testing data with proportion 8:1:1. Table 1 gives an
example of the data.

(1) Analysis of Different Pooling Parameters As intro-
duced in our approach, pooling parameter k is meaningful
for our model. If we set k to 1, we can obtain the best match-
ing position for two sentences. While if k is larger than 1, we
are leveraging multiple matching positions to determine the
final score. Therefore, we conduct experiments to demon-
strate the influences of different pooling parameters. Here,
the interaction function is fixed to cosine in order to directly
compare with the baseline model LSTM-RNN, similar re-
sults can be obtained for other interaction functions such as
bilinear and tensor layer.

In this experiment, we report different results when k is
set to 1, 3, 5 and 10. As shown in Table 2, the performance
is better when larger k is used in k-Max pooling for our MV-
LSTM. It means that multiple sentence representations do
help matching. We also observe that when k is larger than 5,
the improvement is quite limited. Therefore, we set k to 5 in
the following experiments.

We further compare our model with LSTM-RNN and Bi-
LSTM-RNN, where they use LSTM from one and two di-
rections to generate sentence representations, respectively.
That is to say, LSTM-RNN views the matching problems
as matching at the last position, while Bi-LSTM-RNN both

3http://lucene.apache.org

Table 3: Experimental results on QA.
Model P@1 MRR

Random Guess 0.200 0.457
BM25 0.579 0.726
ARC-I 0.581 0.756
CNTN 0.626 0.781
LSTM-RNN 0.690 0.822
RAE 0.398 0.652
DeepMatch 0.452 0.679
ARC-II 0.591 0.765
MultiGranCNN 0.725 0.840
MV-LSTM-Cosine 0.739 0.852
MV-LSTM-Bilinear 0.751 0.860
MV-LSTM-Tensor 0.766 0.869

leverage matchings at the first and last position. From the re-
sults in Table 2, we can see that all our MV-LSTMs can beat
them consistently. The results indicate that the best match-
ing position is not always in the first or last one. Therefore,
the consideration of multiple positional sentence representa-
tions is necessary.

We further conduct a case study to show some detailed
analysis. Considering the positive pair (SX , S

+
Y) in Table 1,

if k is set to 1, the interaction our model pools out is hap-
pened at position 6 and 9 in SX and S+

Y , respectively. The
corresponding words at the positions are “memory” and
“memory”. It means that the matching of these two sen-
tences is best modeled when attending to these two words.
Clearly the best matching position in this case is not the
last one, as implicitly assumed in LSTM-RNN. If k = 5,
the matching positions4 are (“memory”, “memory”, 0.84),
(“error”, “error”, 0.81), (“stick”, “stick”, 0.76), (“stick”,
“memory”, 0.65), (“memory”, “stick”, 0.63), with the num-
ber stands for the interaction produced by the similarity
function. We can see that our model focuses on the key-
word correctly and the matching is largely influenced by
the positional representations on these keywords. In addi-
tion, we also observe that the interactions between “stick”
and “memory” play an important role for the final matching.
Therefore, our model can capture important n-gram match-
ing patterns by involving rich context to represent local in-
formation.

(2) Performance Comparison We compare our model
with all other baselines on the task of QA. Since there are
three different interaction functions, our model has three ver-
sions, denoted as MV-LSTM-Cosine, MV-LSTM-Bilinear
and MV-LSTM-Tensor, respectively. The experimental re-
sults are listed in Table 3. From the results, we have several
experimental findings. Firstly, all end to end deep models
(i.e., all baselines except for RAE and DeepMatch) outper-
form BM25. This is mainly because deep models can learn
better representations and deal with the mismatch prob-
lem effectively. Secondly, comparing our model with sin-
gle sentence representation deep models, such as ARC-I,

4Here, we use the corresponding word at the position to indicate
a position.

Table 4: Case study on QA to compare MV-LSTM with
MultiGranCNN.
SX

How could learn Russian by Internet for free?
Any good websites?

S+
Y

Not sure free will get you unforgettable languages,
however that will give you some basic vocabulary
and great system for remembering it.

S−Y

In the Yahoo! home page you will get whole list of
sites offering this game for free or visit
www.iwin.com for free download.

CNTN, and LSTM-RNN, we can see that all our three mod-
els are better than them. Specifically, MV-LSTM-Tensor
obtains 11.1% relative improvement over LSTM-RNN on
P@1. This is mainly because our multiple positional sen-
tence representations can capture more detailed local infor-
mation than them. Thirdly, comparing our model with mul-
tiple granularity models such as RAE, DeepMatch, ARC-
II, and MultiGranCNN, our model also outperforms them.
Specifically, MV-LSTM-Tensor obtains 5.6% relative im-
provement over MultiGranCNN on P@1. The reason lies
in that our local information are obtained by representing
the whole sentence, therefore, rich context information can
be leveraged to determine the importance of different local
information. Finally, among our three models, MV-LSTM-
Tensor performs best. This is mainly because tensor layer
can capture more complicated interactions, which is con-
sistent with the observation that CNTN outperforms ARC-I
significantly.

We give an example in the data, as illustrated in Table 4,
to further show why our model outperforms the best model
which considers multiple granularity, i.e. MultiGranCNN.
Our experiments show that MultiGranCNN is largely influ-
enced by the word level matching “free” to “free”, and thus
get a wrong answer. This is because the two “free”s are of
different meanings, the first one is focusing on free language
resources, while the second one is talking about free games.
Therefore, the word/phrase level matching requires to con-
sider the whole context. Our model can tackle this problem
by considering multiple positional sentence representations.
Specifically, the positional interactions “(free, free)” is large
in matching SX and S+

Y , while it is small in matching SX

and S−Y , , which is consistent with our intuitive understand-
ing for matching.

Sentence Completion
In this section, we show our experimental results on sentence
completion, which tries to match the first and the second
clauses in the same sentence. We are using exactly the same
dataset constructed in (Hu et al. 2014) from Reuters (Lewis
et al. 2004). Specifically, the sentences which have two
“balanced” clauses (with 8-28 words) divided by a comma
are extracted from the original Reuters dataset and the two
clauses form a positive matching pair. For negative exam-
ples, the first clause are kept and the second clauses are sam-
pled from other clauses which are similar with it by cosine
similarity. For each positive example, 4 negative examples

Table 5: Experimental results on SC.
Model P@1 MRR

Random Guess 0.200 0.457
BM25 0.346 0.568
ARC-I (Hu et al., 2014) 0.475 -
CNTN 0.525 0.722
LSTM-RNN 0.608 0.772
RAE (Hu et al., 2014) 0.258 -
DeepMatch (Hu et al., 2014) 0.325 -
ARC-II (Hu et al., 2014) 0.496 -
MultiGranCNN 0.595 0.763
MV-LSTM-Cosine 0.665 0.808
MV-LSTM-Bilinear 0.679 0.817
MV-LSTM-Tensor 0.691 0.824

are constructed, and thus we will also get 20% for P@1 by
random guess.

The experimental results are listed in Table 5. Consider-
ing we are using the same data, some baseline results are
directly cited from (Hu et al. 2014), such as ACR-I, ARC-
II, RAE and DeepMatch. Since Hu et al. only used P@1
for evaluation in their paper, the results of MRR for these
baselines are missing in Table 5. From the results, we can
see that deep models gain larger improvements over BM25,
compared with that on QA. This is because the mismatch
problem is more serious on this dataset, and usually the first
clause has few same keyword with the second one. The other
results are mainly consistent with those on QA, and MV-
LSTM still performs better than all baseline methods signif-
icantly, with 11.4% relative improvement on P@1 over the
strongest baseline.

Conclusions
In this paper, we propose a novel deep architecture for
matching two sentences with multiple positional sentence
representations, namely MV-LSTM. One advantage of our
model lies in that it can both capture the local information
and leverage rich context information to determine the im-
portance of local keywords from the whole sentence view.
Our experimental results and case studies show some valu-
able insights: (1) Under the assumption that the final match-
ing is solely determined by one interaction (i.e. pooling pa-
rameter is fixed to 1), MV-LSTM can achieve better results
than all single sentence representation methods including
LSTM-RNN. This means that the best matching position
does not always lie in the last one, therefore, the considera-
tion of multiple positional sentence representations is neces-
sary. (2) If we allow the aggregation of multiple interactions
(i.e. pooling parameter is fixed to larger than 1), MV-LSTM
can achieve even better results. This means that the matching
degree is usually determined by the combination of match-
ings at different positions. Therefore, it is much more ef-
fective by considering multiple sentence representations. (3)
Our model is also better than multiple granularity methods,
such as DeepMatch, RAE and MultiGranCNN. This means
that the consideration of multi-granularity need to rely on
rich context of the whole sentence.

Acknowledgments
This work was funded by 973 Program of China under
Grants No. 2014CB340401 and 2012CB316303, 863 Pro-
gram of China under Grant No. 2014AA015204, the Na-
tional Natural Science Foundation of China (NSFC) un-
der Grants No. 61472401, 61433014, 61425016, 61203298,
and 61425016, Key Research Program of the Chinese
Academy of Sciences under Grant No. KGZD-EW-T03-2,
and Youth Innovation Promotion Association CAS under
Grant No. 20144310. We also would like to thank Prof.
Chengxiang Zhai for the constructive comments.

References
Bahdanau, D.; Cho, K.; and Bengio, Y. 2014. Neural ma-
chine translation by jointly learning to align and translate.
CoRR abs/1409.0473.
Berger, A.; Caruana, R.; Cohn, D.; Freitag, D.; and Mittal, V.
2000. Bridging the Lexical Chasm: Statistical Approaches
to Answer-finding. In Proceedings of the 23rd Annual Inter-
national ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval, 192–199.
Dolan, B.; Quirk, C.; and Brockett, C. 2004. Unsupervised
construction of large paraphrase corpora: Exploiting mas-
sively parallel news sources. In Proceedings of the 20th In-
ternational Conference on Computational Linguistics (Col-
ing), 350–356.
Duchi, J.; Hazan, E.; and Singer, Y. 2011. Adaptive subgra-
dient methods for online learning and stochastic optimiza-
tion. The Journal of Machine Learning Research 12:2121–
2159.
Glorot, X.; Bordes, A.; and Bengio, Y. 2011. Deep sparse
rectifier networks. In Proceedings of the 14th International
Conference on Artificial Intelligence and Statistics (AIS-
TATS), volume 15, 315–323.
Graves, A.; Mohamed, A.-r.; and Hinton, G. 2013. Speech
recognition with deep recurrent neural networks. In IEEE
International Conference on Acoustics, Speech and Signal
Processing (ICASSP), 6645–6649.
Greff, K.; Srivastava, R. K.; Koutnı́k, J.; Steunebrink, B. R.;
and Schmidhuber, J. 2015. LSTM: A search space odyssey.
CoRR abs/1503.04069.
Hochreiter, S., and Schmidhuber, J. 1997. Long Short-Term
Memory. Neural Comput. 9(8):1735–1780.
Hu, B.; Lu, Z.; Li, H.; and Chen, Q. 2014. Convolutional
neural network architectures for matching natural language
sentences. In Advances in Neural Information Processing
Systems (NIPS), 2042–2050.
Huang, P.-S.; He, X.; Gao, J.; Deng, L.; Acero, A.; and Heck,
L. 2013. Learning deep structured semantic models for web
search using clickthrough data. In Proceedings of the 22nd
ACM International Conference on Information & Knowl-
edge Management (CIKM), 2333–2338.
Kalchbrenner, N.; Grefenstette, E.; and Blunsom, P. 2014.
A convolutional neural network for modelling sentences. In
Proceedings of the 52nd Annual Meeting of the Association
for Computational Linguistics (ACL), 655–665.

Lewis, D. D.; Yang, Y.; Rose, T. G.; and Li, F. 2004. RCV1:
A New Benchmark Collection for Text Categorization Re-
search. J. Mach. Learn. Res. 5:361–397.
Li, H., and Xu, J. 2013. Semantic Matching in Search.
Foundations and Trends in Information Retrieval 7(5):343–
469.
Lu, Z., and Li, H. 2013. A Deep Architecture for Matching
Short Texts. In Advances in Neural Information Processing
Systems (NIPS), 1367–1375.
Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G. S.; and
Dean, J. 2013. Distributed representations of words and
phrases and their compositionality. In Advances in Neural
Information Processing Systems (NIPS), 3111–3119.
Palangi, H.; Deng, L.; Shen, Y.; Gao, J.; He, X.; Chen, J.;
Song, X.; and Ward, R. K. 2015. Deep sentence embedding
using the long short term memory network: Analysis and
application to information retrieval. CoRR abs/1502.06922.
Qiu, X., and Huang, X. 2015. Convolutional Neural Ten-
sor Network Architecture for Community-Based Question
Answering. In Proceedings of the 24th International Joint
Conference on Artificial Intelligence (IJCAI), 1305–1311.
Robertson, S. E.; Walker, S.; Jones, S.; Hancock-Beaulieu,
M. M.; Gatford, M.; and Others. 1995. Okapi at TREC-3.
NIST SPECIAL PUBLICATION SP 109.
Schuster, M., and Paliwal, K. K. 1997. Bidirectional Recur-
rent Neural Networks. Trans. Sig. Proc. 45(11):2673–2681.
Shen, Y.; He, X.; Gao, J.; Deng, L.; and Mesnil, G. 2014. A
Latent Semantic Model with Convolutional-Pooling Struc-
ture for Information Retrieval. In Proceedings of the 23rd
ACM International Conference on Conference on Informa-
tion and Knowledge Management (CIKM), 101–110.
Socher, R.; Huang, E. H.; Pennington, J.; Ng, A. Y.; and
Manning, C. D. 2011. Dynamic Pooling and Unfolding Re-
cursive Autoencoders for Paraphrase Detection. In Advances
in Neural Information Processing Systems (NIPS), 801–809.
Socher, R.; Chen, D.; Manning, C. D.; and Ng, A. 2013a.
Reasoning with neural tensor networks for knowledge base
completion. In Advances in Neural Information Processing
Systems (NIPS), 926–934.
Socher, R.; Perelygin, A.; Wu, J. Y.; Chuang, J.; Manning,
C. D.; Ng, A. Y.; and Potts, C. 2013b. Recursive deep mod-
els for semantic compositionality over a sentiment treebank.
In Proceedings of the Conference on Empirical Methods in
Natural Language Processing (EMNLP), 1631–1642.
Yin, W., and Schütze, H. 2015a. Convolutional Neural
Network for Paraphrase Identification. In The 2015 Confer-
ence of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies
(NAACL), 901–911.
Yin, W., and Schütze, H. 2015b. MultiGranCNN: An Ar-
chitecture for General Matching of Text Chunks on Multiple
Levels of Granularity. In Proceedings of the 53rd Annual
Meeting of the Association for Computational Linguistics
(ACL), 63–73.

